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acoustic medium. The dash-dot curves correspond to the asymptotic approximation of the fluid 
reaction (3.4). 

Unlike the acoustic medium, where the reaction on the sphere is produced by the incident 
wave front for z= A, the reaction on the sphere in a compressible viscous fluid is non- 
zero for T>O. For h=2, as the viscosity increases (Fig-l), the reaction of the com- 
pressible viscous fluid on the sphere progressively deviates from the reaction of the acoustic 

medium. The amplitude of the reaction of the fluid on the sphere noticeable decreases with 
distance from the perturbation source (Fig.2) and becomes smoother. The numerical results 
agree closely with the asymptotic approximation (3.4) for moderate dimensionless times 2. 
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ON THE IMPOSSIBILITY OF REGULAR REFLECTION OF A STEADY-STATE SHOCK WAVE 

FROM THE AXIS OF SYMMETRY* 

A.I. RYLOV 

Some problems concerning the explanation of the fact that regular 
reflection of a shock wave from the axis of symmetry is impossible are 
considered. This fact is well-known and can be demonstrated by linear 

analysis; it was proved in /l/ by integrating the compatibility condition 

along the characteristic reaching the point of alleged regular 

reflection. In this paper, we investigate the flow in the neighbourhood 
of this point and show that it should be conical. We also prove that the 
inverse problem of constructing the flow field and the boundary 
streamline from a given shock wave of arbitrary shape is physically 

unrealizable in a small neighbourhood of the axis of symmetry. 
This topic is also relevant because the literature contains 

conflicting statements claiming that regular reflection is possible and 
(much more seldom) impossible, never offering a detailed explanation 

(see, e.g., /2, 3/j. This may explains why this topic has not been 

treated in detail in authoritative monographs, unlike the similar problem 

of the collapse of an unsteady-state spherical or cylindrical shock wave. 

1. Consider the following proposed picture of the supersonic axisymmetric flow of an 
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ideal (non-viscous and non-heat-conducting) gas. In Fig.1, a0 and Ob are the incident and 

the reflected shock waves. A supersonic uniform flow parallel to the x-axis (y is the 

radial coordinate) impinges on a0 from the left. The uniformity assumption does not limit 
the generality of our treatment, because for a non-uniform incident flow the analysis an be 
restricted to a sufficiently small neighbourhood of the point O(O,O). On the right side of 

a0, the slope of the velocity vector is strictly negative (it 
that the wave a0 does not degenerate into a characteristic as 
tinuous supersonic flow is assumed between a0 and Ob. 

can be shown by linear analysis 
we approach the point 0). Con- 

Fig.1 Fig.2 

Unlike the plane case, this assumed flow is impossible. In order to elucidate in more 
detail the reasons for the impossibility of this flow, we will investigate the structure of 
the assumed flow in a small neighbourhood of the point 0. We will write the equations of 
motion in a polar coordinate system a, r (h = z/y,? =x2 + y”), using as the functions the 
pressure p and the slope 0 of the velocity vector to the x-axis /4/: 

Oh. (h + k) - px (W - 1) (1 - hk) i (pq”) - k = 
(r0? (1 - hk) + TP~ (M2 - 1) (J. + k) / (PP”)) y2+ 

fh (1 - hk) - PA (h + k) / (P?) = 
-(rQ (A + k) + rp, (1 - hk) i (pq”)) y2+; k = tg 8 

(1.1) 

Here p is density, q is the absolute value of the velocity vector, and M is the Mach 
number. In the region aOb,p,q and M depend on p and on the entropy s, which is constant 
along the streamlines. As we approach the point 0,s tends to a finite limit sO. Therefore, 
in a small neighbourhood of 0, p,~ and M are known functions of p and s0 up to 6 -S-S,,. 
In Eqs.(l.l), the expressions containing the derivatives with respect to r are collected on 
the right-hand sides. It is important that 8, and pT are always multiplied by r. As a 
result, the right-hand sides of (1.1) tend to zero as the point 0 is approached. 
and I3 should have finite values at the point 0. 

Indeed, p 
Therefore, even if there is a singularity 

at the point 0, the derivatives pI and 8, may not increase faster than 
it follows that rp, and re,, 

r-'+e, E > 0, whence 
and with them the right-hand sides of Eqs.(l.l), tend to zero 

as we approach the point 0. 
It follows from the above that, in the assumed flow scheme, Eqs.tl.1) describe conical 

flow in an infinitely small neighbourhood of the point 0. More precisely, p and 0 should 
vary as in a conical flow when we move to the right from a0 along the arc of a circle of 
infinitely small radius centred at the point 0. 

This conical flow, contiguous along the straight shock wave a0 with the uniform flow 
incident from the left in the direction of the x-axis (Figl.2), was considered in /5/. It was 
shown that such conical flow mav exist in the reoion afd, where fd is the second-family ., 
characteristic tangent to the ray Od at the point d. 
Numerical examples /5/ indicate that rarefaction flow 
also eh > 0. 

At the point d we have Ok = -ph = W. 
is observed in afd, i.e., pn<O, and 

quite general. Indeed, from Eqs.tl.1) 2. It can be shown that the above discussion is 
with zero right-hand sides we obtain 

ek = -sin e sin 'p sin* a ~0s ((p 
..__ _ - e) / (s-s+) 

ph 1 (pq") = 4 tg (cp - e) = -sin e sin cp sin2 OL sin ('p - e) I (S-S+) 
cp = arc&g h, a = arcsin (M-l), S* = sin (v - e f a) 

(5.1) 

Behind the shock wave at the point a 

e < 0, cos ((P - e) < 0, s- > 0; CP - e + u > 7-b S+ < 0 
The last two inequalities follow from Zemplen's theorem. Therefore, 

h = h,. 
e1 < 0, PA < 0 for 
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It can be shown that as we move to the right from the point a, i.e., as ?, increases, 
8, Oh, and ph do not vanish. Indeed, from 0 = 0 for St<0 it follows that the flow 
should be uniform with 0 = 81 =ph = 0 in the entire range of h, which is impossible. The 
case when cpfcc =x for 0 =0 was studied in connection with Busemann's conical flows /6/. 
We merely note that O/O singularities on the right-hand sides of (2.1) may be resolved by 
1'Hopital's rule, producing the inequalities %. < @? Pi > 0 for this point, which is also 
impossible for flows originating from the shock waves, behind which we have i3<0, Oh > 0, ph.< 
0. 

Thus, for admissible values of h (h,< h<h,), the flow is a rarefaction flow with 

Pn < 0 in which 0 < O,O*> 0. At the point d, we have 'p - 0 + cz = n, i.e., the second- 
family characteristic df is tangent to the ray Od. At this point e;L = m,p>, = --0~. This de- 
generation is similar to that considered previously /i'/ for a different conical rarefaction 
flow. 

Let us estimate the extent of the region of existence of this flow, i.e., the value of 

(Pa - Pd. From Pa. < 0 it follows that oh< 0, and therefore tl- ah>O. Hence ffd = 

s + ed - ad > n ,‘,,“, - % On the other hand, cp,<x - a, (a, is the Mach angle in the in- 
cident flow). , ‘Pi -- (Pi < a, - en - a,. Therefore, as the shock wave intensity falls off, 
we have 8,+ 0, qd+qa. 

We should note at this point that, despite the similarity in boundary conditions, this 
flow is fundamentally different from the Busenannflow originating from a second-family 
characteristic /6/. Busenann flow, unlike the flow considered above, is a compression flow, 
it adjoins the symmetry axis and nay be transformed by a closing conical shock wave into a 
flow parallel to the z-axis. 

To the right of the characteristic fd, the conical flow does not exist- This can be 
explained as follows. Take two points f+and f on the straight shock wave above and below 

the point f at distances E+ and e- from it, respectively. The second-family characteristic 

passing through f’ intersects the upper wall as the point #with distance 6+ between dC 

and d. An unlimited increase in the derivatives, 0, and pi as one approaches the point d 
implies that 8'/s+-+O as a++ 0. On the other hand, when we formally construct the flow 
to the right of the characteristic fd and the segment f-f of the straight shock wave, the 
second-family characteristic originating from the point f- will intersect fd below the upper 
wall for an arbitrarily small E-. This flow is therefore physically unrealizable. It also 

follows that, for any channel profile, the shock wave intensity can only increase to the right 

of the point d, and the velocity behind the shock wave decreases to subsonic with subsequent 

flow restructuring and the appearance of irregular reflection. 

3. The picture described above is obviously observed also in the more general case of 

flows with a curvilinear shock wave. This case is conveniently considered in terms of the 

following inverse problem. Suppose we are given some fairly smooth shock wave a0 (Fig.3). On 

its right side, O< O,ilf>l. Consider the problem of constructing the flow field and the 

channel wall to the right of CIO. 
Using the distributions of p and 0 along the right 

com- 
a Y 

side of a0 and the equations of gas dynamics or the 

patibility conditions, we calculate the derivative o( = 

do/al, o = e - a, along the second-family characteristic. 
This derivative in our case is interesting in that it is 
directly related to the radius of curvature R of the 
second-family characteristic originating from the given 

point of the wave ~0: 

0, = 
sin 0 sin'or(cos 6 - a$q8sin b) + yz 

usin@-a) (3.1) 

0 I aP = aa(p, s)/&, R = liol 

Fig.3 

where B (P<O) is the angle between the velocity vector and the shock wave, and s is the 

combination of the derivatives of p and 0 calculated along ~0. 
As in the analysis of system (l.l), we can show that the product yz from (3.1) tends to 

zero as y-t 0. Seeing that sin 8 < 0, sin p < O,# sin (fi - a) <O, up > 0, we conclude that for 

y-to, 01 increases as l/y. This is naturally consistent with the fact that system (1.1) 

describes conical flow as y +O. 
Thus, as we approach the point 0 along a0, the slope of the characteristics tends to a 

finite limit, but,the radius of curvature 13 =l/ol decreases in proportion to y. The character- 

istics originating from the points of a0 turn counterclockwise. 
This leads to the following ConClUSiOn. In a sufficiently small neighbourhood of the 

point 0, two near second-family characteristics originating from the points of ~0 intersect 
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below the channel wall. This implies that the inverse problem of constructing the flow field 
and the channel wall from a given shock wave is physically unrealizable near the axis of 
symmetry. 

The general flow picture is described as follows. At a sufficient distance from the axis 
of symmetry, a solution corresponding to the given shock wave aU exists up to the character- 
istic fd such that, at the point d 13, = 00 and P% are derivatives 
along a streamline). To the right of fd, 

and pr = --m (ij, 
this problem is unsolvable. For any shape of the 

wall to the right of the point d, including a bend at the point d (Fig.31, the intensity of 
the shock wave fg can only increase, with the velocity behind the shock wave decreasing to a 
subsonic value. This ultimately leads to irregular reflection and the formation of a Mach 
disk. Numerical results for Jets /3/' show that the size of the Mach disk decreases rapidly 
as the unrated conditions of the jet approach 1. This is consistent with the numeriaal 
analysis of weakly converging channels with a straight generator /81. Our argument may provide 
one of the explanations of the experiments /9/ in which the Mach disk is not detected visually. 

In conclusion we recall that in this paper our analysis of the impossibility of regular 
reflection is based on the boundedness of the gas-dynamic parameters behind the shock wave as 
it approaches the axis of symmetry. At the same time, no such restrictions are imposed in 
similar problems with shock wave collapse and reflection in one-dimensional unsteady-state 
gas dynamics with cylindrical or spherical symmetry. Therefore, in the equations describing 
wave collapse and reflection in the variables fl and h=tir, where r is the radial coordinate 
and t is the time, we cannot eliminate terms containing derivatives with respect to r. Indeed, 
in theknownsolutions of Gooderley, Landau and Stanyukovich /lo/, certain parameters, such as 
pressure and shock wave velocity, increase without limit in the case of collapse. Yet the 
same problem with additional constraints on the increase in parametrs is unsolvable, becuase 
as the shock wave approaches the axis of symmetry or point of symmetry, its intensity increases 
without limit for any motion of the piston. This also highlights a certain analogy with the 
topics considered in this paper. 

I wish to acknowledge the useful comments of A.N. Kraikov and B.I. Gutov. 
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